一、氮(dan)氣(qi)孔(kong)的形(xing)成(cheng)機理(li)


  在(zai)(zai)21.5Cr5Mn1.5Ni0.25N含(han)氮(dan)(dan)(dan)雙相(xiang)(xiang)(xiang)鋼凝(ning)(ning)固(gu)(gu)過程(cheng)(cheng)(cheng)(cheng)中(zhong)(zhong),氮(dan)(dan)(dan)氣孔形(xing)(xing)成(cheng)和(he)凝(ning)(ning)固(gu)(gu)前沿處[%N]1iq隨(sui)距離變化的(de)(de)(de)(de)(de)(de)規(gui)律如(ru)圖(tu)2-55所(suo)示。由于糊狀區(qu)內大(da)(da)量(liang)枝(zhi)晶(jing)網狀結構的(de)(de)(de)(de)(de)(de)形(xing)(xing)成(cheng),液(ye)相(xiang)(xiang)(xiang)的(de)(de)(de)(de)(de)(de)對流只存在(zai)(zai)于一次枝(zhi)晶(jing)尖端(duan)位置(zhi)附(fu)近。且(qie)枝(zhi)晶(jing)間幾乎無液(ye)相(xiang)(xiang)(xiang)的(de)(de)(de)(de)(de)(de)流動(dong)。因此,枝(zhi)晶(jing)間殘(can)(can)余液(ye)相(xiang)(xiang)(xiang)中(zhong)(zhong)的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)傳(chuan)質(zhi)主(zhu)要依靠氮(dan)(dan)(dan)的(de)(de)(de)(de)(de)(de)擴(kuo)散行為,且(qie)糊狀區(qu)內氮(dan)(dan)(dan)傳(chuan)質(zhi)速(su)率非(fei)常小(xiao)(xiao)。初始相(xiang)(xiang)(xiang)貧氮(dan)(dan)(dan)鐵素體(ti)相(xiang)(xiang)(xiang)8的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)溶解(jie)度(du)和(he)糊狀區(qu)的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)傳(chuan)質(zhi)速(su)率較低,導致在(zai)(zai)貧氮(dan)(dan)(dan)鐵素體(ti)相(xiang)(xiang)(xiang)枝(zhi)晶(jing)附(fu)近的(de)(de)(de)(de)(de)(de)液(ye)相(xiang)(xiang)(xiang)中(zhong)(zhong)出現氮(dan)(dan)(dan)富集,且(qie)[%N]iq迅速(su)增大(da)(da),如(ru)圖(tu)2-55(a)所(suo)示。根據Yang和(he) Leel70]、Svyazhin 等、Ridolfi 和(he) Tassal的(de)(de)(de)(de)(de)(de)報道可知,當[%N]iq的(de)(de)(de)(de)(de)(de)最大(da)(da)值超過氮(dan)(dan)(dan)氣泡形(xing)(xing)成(cheng)的(de)(de)(de)(de)(de)(de)臨界(jie)氮(dan)(dan)(dan)質(zhi)量(liang)分(fen)數([%N]pore)時(shi),該區(qu)域有(you)氣泡形(xing)(xing)成(cheng)的(de)(de)(de)(de)(de)(de)可能性,如(ru)圖(tu)2-55(b)所(suo)示。在(zai)(zai)后(hou)(hou)續的(de)(de)(de)(de)(de)(de)凝(ning)(ning)固(gu)(gu)過程(cheng)(cheng)(cheng)(cheng)中(zhong)(zhong),隨(sui)著包晶(jing)反應(ying)的(de)(de)(de)(de)(de)(de)進行,富氮(dan)(dan)(dan)奧(ao)氏(shi)體(ti)相(xiang)(xiang)(xiang)γ以異(yi)質(zhi)形(xing)(xing)核的(de)(de)(de)(de)(de)(de)方(fang)式在(zai)(zai)鐵素體(ti)相(xiang)(xiang)(xiang)8枝(zhi)晶(jing)的(de)(de)(de)(de)(de)(de)表(biao)面開始形(xing)(xing)核長(chang)大(da)(da),逐漸包裹鐵素體(ti)相(xiang)(xiang)(xiang)枝(zhi)晶(jing)表(biao)面,并(bing)開始捕獲殘(can)(can)余液(ye)相(xiang)(xiang)(xiang)中(zhong)(zhong)的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)氣泡,對比圖(tu)2-51和(he)圖(tu)2-56可知,此時(shi)枝(zhi)晶(jing)間殘(can)(can)余[%N]1ig的(de)(de)(de)(de)(de)(de)增長(chang)速(su)率減(jian)小(xiao)(xiao)。對平(ping)衡(heng)凝(ning)(ning)固(gu)(gu)而言,殘(can)(can)余液(ye)相(xiang)(xiang)(xiang)中(zhong)(zhong)氮(dan)(dan)(dan)氣泡形(xing)(xing)成(cheng)以后(hou)(hou),氮(dan)(dan)(dan)的(de)(de)(de)(de)(de)(de)富集程(cheng)(cheng)(cheng)(cheng)度(du)減(jian)弱,[%N]1iq增長(chang)速(su)率的(de)(de)(de)(de)(de)(de)減(jian)小(xiao)(xiao)程(cheng)(cheng)(cheng)(cheng)度(du)明顯;相(xiang)(xiang)(xiang)比之下,Scheil凝(ning)(ning)固(gu)(gu)過程(cheng)(cheng)(cheng)(cheng)中(zhong)(zhong),氮(dan)(dan)(dan)氣泡形(xing)(xing)成(cheng)以后(hou)(hou),殘(can)(can)余液(ye)相(xiang)(xiang)(xiang)中(zhong)(zhong)氮(dan)(dan)(dan)富集狀態有(you)所(suo)緩(huan)解(jie),但幅度(du)很小(xiao)(xiao)。隨(sui)著凝(ning)(ning)固(gu)(gu)界(jie)面的(de)(de)(de)(de)(de)(de)進一步推移,被(bei)捕獲的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)氣泡在(zai)(zai)奧(ao)氏(shi)體(ti)相(xiang)(xiang)(xiang)表(biao)面開始長(chang)大(da)(da),并(bing)沿凝(ning)(ning)固(gu)(gu)方(fang)向拉(la)長(chang),如(ru)圖(tu)2-55(c)所(suo)示。



  氮氣(qi)(qi)孔(kong)(kong)沿徑向生(sheng)長,生(sheng)長方(fang)向與(yu)凝固方(fang)向一(yi)致(zhi),那么氮氣(qi)(qi)孔(kong)(kong)初(chu)始形成(cheng)(cheng)位(wei)置靠(kao)近鑄錠邊(bian)部,且氮氣(qi)(qi)泡(pao)初(chu)始位(wei)置邊(bian)緣(yuan)全由(you)奧(ao)氏體(ti)相(xiang)(xiang)(xiang)γ構成(cheng)(cheng)(圖2-57中I區(qu)),與(yu)圖2-55描述(shu)相(xiang)(xiang)(xiang)符。隨著氮氣(qi)(qi)孔(kong)(kong)被拉長,鐵素體(ti)相(xiang)(xiang)(xiang)和奧(ao)氏體(ti)相(xiang)(xiang)(xiang)以體(ti)積分(fen)數(shu)比約為0.92的(de)關系(xi)交替(ti)在氮氣(qi)(qi)泡(pao)周圍形成(cheng)(cheng),直到氮氣(qi)(qi)孔(kong)(kong)閉(bi)合。凝固結(jie)束后,氮氣(qi)(qi)孔(kong)(kong)的(de)宏觀形貌類似于橢圓形,與(yu)Wei等的(de)研究結(jie)果一(yi)致(zhi)



二、氮微觀偏析(xi)對氮氣孔的影響


  氮(dan)(dan)(dan)的(de)(de)(de)(de)(de)分配系(xi)數(shu)(shu)較(jiao)小,導致(zhi)液(ye)相(xiang)向固(gu)(gu)相(xiang)轉變(bian)的(de)(de)(de)(de)(de)過(guo)程中(zhong),固(gu)(gu)相(xiang)會將多(duo)余的(de)(de)(de)(de)(de)氮(dan)(dan)(dan)轉移(yi)到殘余液(ye)相(xiang)中(zhong),形(xing)成(cheng)氮(dan)(dan)(dan)偏析。在氮(dan)(dan)(dan)偏析程度(du)逐漸加重的(de)(de)(de)(de)(de)過(guo)程中(zhong),當殘余液(ye)相(xiang)中(zhong)氮(dan)(dan)(dan)質量(liang)分數(shu)(shu)超(chao)過(guo)其(qi)(qi)飽和度(du)時(shi),極易(yi)(yi)形(xing)成(cheng)氮(dan)(dan)(dan)氣(qi)(qi)泡。隨著凝(ning)(ning)固(gu)(gu)的(de)(de)(de)(de)(de)進行(xing),若(ruo)氣(qi)(qi)泡無(wu)法上浮(fu)而(er)被捕獲(huo),凝(ning)(ning)固(gu)(gu)結束后就(jiu)會在鑄錠內部(bu)(bu)形(xing)成(cheng)氣(qi)(qi)孔(kong)(kong)(kong)(kong)。因(yin)此,凝(ning)(ning)固(gu)(gu)過(guo)程中(zhong)氮(dan)(dan)(dan)偏析和溶解(jie)度(du)對鑄錠中(zhong)最終(zhong)氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)(kong)(kong)(kong)的(de)(de)(de)(de)(de)形(xing)成(cheng)有(you)至關重要的(de)(de)(de)(de)(de)作用。氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)(kong)(kong)(kong)多(duo)數(shu)(shu)情況下與疏松縮(suo)孔(kong)(kong)(kong)(kong)共存,內壁凹凸不(bu)平呈現裂紋(wen)狀(zhuang)(zhuang),且整個氣(qi)(qi)孔(kong)(kong)(kong)(kong)形(xing)狀(zhuang)(zhuang)不(bu)規則,如(ru)圖2-58所示。此類氣(qi)(qi)孔(kong)(kong)(kong)(kong)不(bu)僅與鋼(gang)液(ye)中(zhong)氣(qi)(qi)泡的(de)(de)(de)(de)(de)形(xing)成(cheng)有(you)關,還受(shou)凝(ning)(ning)固(gu)(gu)收縮(suo)等因(yin)素的(de)(de)(de)(de)(de)影響(xiang),且多(duo)數(shu)(shu)分布于(yu)鑄錠心(xin)部(bu)(bu),尤(you)其(qi)(qi)在中(zhong)心(xin)等軸晶區(qu)。這主要由于(yu)中(zhong)心(xin)等軸晶區(qu)內枝晶生(sheng)長較(jiao)發(fa)達,容易(yi)(yi)形(xing)成(cheng)復雜的(de)(de)(de)(de)(de)網(wang)狀(zhuang)(zhuang)結構,從而(er)將液(ye)相(xiang)分割(ge)成(cheng)無(wu)數(shu)(shu)個獨立(li)的(de)(de)(de)(de)(de)液(ye)相(xiang)區(qu)域,當發(fa)生(sheng)凝(ning)(ning)固(gu)(gu)收縮(suo)時(shi),難以進行(xing)補縮(suo),在形(xing)成(cheng)疏松縮(suo)孔(kong)(kong)(kong)(kong)的(de)(de)(de)(de)(de)同時(shi),局部(bu)(bu)鋼(gang)液(ye)靜壓力降(jiang)低,促使氮(dan)(dan)(dan)從殘余液(ye)相(xiang)中(zhong)析出,從而(er)形(xing)成(cheng)了(le)氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)(kong)(kong)(kong)和疏松縮(suo)孔(kong)(kong)(kong)(kong)共存的(de)(de)(de)(de)(de)宏觀缺陷。


圖 58.jpg



  平衡凝固時,19Cr14Mn0.9N含氮奧氏體(ti)不銹(xiu)鋼殘余液相(xiang)中(zhong)氮偏(pian)析(xi)(xi)與體(ti)系氮溶(rong)解度(du)的差(cha)(cha)值(zhi)(zhi)如圖2-59所示(shi)。凝固初(chu)期鐵素(su)(su)體(ti)阱(ferrite trap)的形成(cheng),導致氮溶(rong)解度(du)的降低,進而使(shi)氮偏(pian)析(xi)(xi)與體(ti)系氮溶(rong)解度(du)差(cha)(cha)值(zhi)(zhi)呈現出略微(wei)增大的趨(qu)(qu)勢(shi)。但在后續凝固過程中(zhong),隨著鐵素(su)(su)體(ti)阱的消失以(yi)及(ji)富氮奧氏體(ti)相(xiang)的不斷形成(cheng),差(cha)(cha)值(zhi)(zhi)減小(xiao)(xiao);在整個凝固過程中(zhong)差(cha)(cha)值(zhi)(zhi)始終較(jiao)小(xiao)(xiao),且變(bian)化(hua)幅度(du)較(jiao)窄。對于(yu)19Cr14Mn0.9N 含氮奧氏體(ti)不銹(xiu)鋼,液相(xiang)中(zhong)氮氣(qi)泡的形成(cheng)趨(qu)(qu)勢(shi)較(jiao)小(xiao)(xiao),難以(yi)在鑄錠內形成(cheng)獨(du)立內壁光滑的規則氮氣(qi)孔。


  此外,目前有人對(dui)奧氏體(ti)(ti)鋼凝固(gu)過(guo)程(cheng)中(zhong)氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)(kong)(kong)的(de)(de)(de)(de)(de)形(xing)(xing)成(cheng)進(jin)行了大(da)(da)量研究(jiu),如Yang和(he)(he)Leel901研究(jiu)了奧氏體(ti)(ti)鋼16Cr3NixMn(x=9和(he)(he)11)凝固(gu)過(guo)程(cheng)中(zhong)壓力和(he)(he)初始(shi)氮(dan)(dan)(dan)質量分數等(deng)因(yin)(yin)素對(dui)氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)(kong)(kong)形(xing)(xing)成(cheng)的(de)(de)(de)(de)(de)影響規(gui)(gui)律(lv),并建立(li)了相(xiang)應的(de)(de)(de)(de)(de)預(yu)測模型(xing)。Ridolfi和(he)(he)Tassal[84]分析(xi)了氮(dan)(dan)(dan)偏析(xi)、合金元素、冷(leng)卻速(su)(su)率以及枝晶(jing)間距對(dui)奧氏體(ti)(ti)鋼中(zhong)氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)(kong)(kong)的(de)(de)(de)(de)(de)影響規(gui)(gui)律(lv),并揭示(shi)了奧氏體(ti)(ti)鋼中(zhong)氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)(kong)(kong)形(xing)(xing)成(cheng)機理。然而,目前對(dui)于雙(shuang)相(xiang)鋼中(zhong)氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)(kong)(kong)形(xing)(xing)成(cheng)的(de)(de)(de)(de)(de)研究(jiu)較(jiao)少,且(qie)(qie)主要(yao)集中(zhong)在合金元素、鑄造方式、冷(leng)卻速(su)(su)率等(deng)因(yin)(yin)素對(dui)氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)(kong)(kong)影響規(gui)(gui)律(lv)的(de)(de)(de)(de)(de)研究(jiu),鮮有對(dui)雙(shuang)相(xiang)鋼中(zhong)氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)(kong)(kong)形(xing)(xing)成(cheng)機理的(de)(de)(de)(de)(de)報道。以21.5Cr5Mn1.5Ni0.25N含氮(dan)(dan)(dan)雙(shuang)相(xiang)鋼為例,氮(dan)(dan)(dan)偏析(xi)與(yu)溶(rong)解度(du)的(de)(de)(de)(de)(de)差值在整個(ge)凝固(gu)過(guo)程(cheng)中(zhong)的(de)(de)(de)(de)(de)變化趨勢,如圖2-59所示(shi)。隨(sui)著凝固(gu)的(de)(de)(de)(de)(de)進(jin)行,氮(dan)(dan)(dan)偏析(xi)始(shi)終大(da)(da)于氮(dan)(dan)(dan)溶(rong)解度(du),且(qie)(qie)差值呈現出快速(su)(su)增大(da)(da)的(de)(de)(de)(de)(de)趨勢。因(yin)(yin)此,在21.5Cr5Mn1.5Ni0.25N 含氮(dan)(dan)(dan)雙(shuang)相(xiang)鋼凝固(gu)過(guo)程(cheng)中(zhong),氮(dan)(dan)(dan)偏析(xi)嚴(yan)重(zhong),殘(can)余液相(xiang)內氮(dan)(dan)(dan)氣(qi)(qi)泡(pao)形(xing)(xing)成(cheng)趨勢較(jiao)大(da)(da),明顯高于19Cr14Mn0.9N含氮(dan)(dan)(dan)奧氏體(ti)(ti)不銹鋼。


圖 59.jpg

  氮氣泡形成和(he)長大(da)具有(you)重要的作用(圖(tu)2-60).其中(zhong)(zhong),σ為(wei)(wei)氣液界面的表面張力,r為(wei)(wei)氣泡半徑(jing)。結(jie)合(he)經(jing)典形核(he)理論,氮氣泡在鋼液中(zhong)(zhong)穩定存在的必要條件為(wei)(wei)氣泡內(nei)壓力大(da)于(yu)作用于(yu)氣泡的所有(you)壓力之和(he),即(ji)


圖 60.jpg


  式中,Aso由凝(ning)固過(guo)(guo)程中除(chu)氮以外其(qi)他(ta)合金元素的(de)(de)微觀偏(pian)析(xi)(xi)進行計算,其(qi)值隨(sui)著枝(zhi)晶間殘余液(ye)(ye)相(xiang)中氮溶解(jie)度的(de)(de)增(zeng)加(jia)而(er)(er)減小,表(biao)征了(le)枝(zhi)晶間殘余液(ye)(ye)相(xiang)中氮溶解(jie)度對氮氣(qi)泡(pao)形成(cheng)的(de)(de)影響程度;Ase表(biao)征了(le)枝(zhi)晶間氮偏(pian)析(xi)(xi)對氮氣(qi)泡(pao)形成(cheng)的(de)(de)影響程度,可由凝(ning)固過(guo)(guo)程中枝(zhi)晶間殘余液(ye)(ye)相(xiang)中氮偏(pian)析(xi)(xi)計算獲(huo)得(de),其(qi)值隨(sui)著氮偏(pian)析(xi)(xi)的(de)(de)增(zeng)大而(er)(er)增(zeng)大。此外,用于(yu)計算Aso和Ase時所(suo)需的(de)(de)合金元素偏(pian)析(xi)(xi)均由鋼凝(ning)固相(xiang)變所(suo)致。


  氮(dan)氣(qi)泡(pao)的形核和長大(da)過程復(fu)雜,且影(ying)(ying)響(xiang)因(yin)(yin)(yin)素(su)眾多,包(bao)括凝(ning)(ning)(ning)固收縮、冶(ye)煉(lian)環境以及坩堝材(cai)質等。因(yin)(yin)(yin)此,很難采(cai)用Pg值精確預測凝(ning)(ning)(ning)固過程中氮(dan)氣(qi)泡(pao)的形成和長大(da)。然而基于(yu)(yu)Yang等的實(shi)驗研究[70,77],在評(ping)估(gu)凝(ning)(ning)(ning)固壓力、合(he)金成分等因(yin)(yin)(yin)素(su)對(dui)(dui)氮(dan)氣(qi)泡(pao)形成的影(ying)(ying)響(xiang)程度時,Pg起關鍵(jian)作用。實(shi)際(ji)凝(ning)(ning)(ning)固過程介于(yu)(yu)平(ping)衡凝(ning)(ning)(ning)固(固/液(ye)相中溶(rong)質完(wan)全擴散(san))和Scheil凝(ning)(ning)(ning)固(固相無溶(rong)質擴散(san),液(ye)相中完(wan)全擴散(san))之間70].因(yin)(yin)(yin)此,可分別計算平(ping)衡凝(ning)(ning)(ning)固和Scheil凝(ning)(ning)(ning)固過程中的Aso、Ase和Pg,闡明(ming)實(shi)際(ji)凝(ning)(ning)(ning)固過程中壓力等因(yin)(yin)(yin)素(su)對(dui)(dui)氮(dan)氣(qi)泡(pao)形成的影(ying)(ying)響(xiang)規律。


  現以21.5Cr5Mn1.5Ni0.25N含氮雙相鋼(gang)D1鑄錠為(wei)例,對(dui)凝固過程中(zhong)Aso、Ase和P8的變化趨勢(shi)進行(xing)計算。圖2-61描(miao)述(shu)了(le)ΔAso(=Asa-Aso,0)和AAse(=Ase-Ase,o)隨固相質量分數的變化趨勢(shi)(Aso,0和Asc,0分別為(wei)D1鑄錠凝固時(shi)Aso和Ase的初(chu)始值)。


  在(zai)(zai)平衡凝(ning)固(gu)(gu)(gu)和(he)(he)(he)Scheil凝(ning)固(gu)(gu)(gu)過程中(zhong)(zhong),ΔAso的最小值(zhi)(zhi)分別為(wei)-0.145和(he)(he)(he)-0.397,與此相(xiang)對(dui)應(ying)的ΔAse值(zhi)(zhi)最大(da),分別為(wei)0.68和(he)(he)(he)0.92.在(zai)(zai)整(zheng)個(ge)凝(ning)固(gu)(gu)(gu)過程中(zhong)(zhong),由于ΔAse與ΔAso之和(he)(he)(he)始(shi)終(zhong)大(da)于零(ling),因而枝晶間殘余(yu)液(ye)相(xiang)中(zhong)(zhong)氮偏析對(dui)D1 鑄錠凝(ning)固(gu)(gu)(gu)過程中(zhong)(zhong)氮氣泡(pao)形成(cheng)的影響(xiang)(xiang)大(da)于氮溶解度,起(qi)主(zhu)導作(zuo)用。此外,在(zai)(zai)整(zheng)個(ge)凝(ning)固(gu)(gu)(gu)過程中(zhong)(zhong),P8變化趨(qu)勢(shi)如圖2-62所(suo)示,其變化規律(lv)(lv)與Young等。的研究結(jie)果一(yi)致(zhi),Pg的最大(da)值(zhi)(zhi)Pg與Ase+Aso的最大(da)值(zhi)(zhi)相(xiang)對(dui)應(ying),且在(zai)(zai)平衡凝(ning)固(gu)(gu)(gu)和(he)(he)(he) Scheil 凝(ning)固(gu)(gu)(gu)過程中(zhong)(zhong)分別為(wei)0.63MPa和(he)(he)(he)0.62MPa.此外,可通過對(dui)比不(bu)同鑄錠中(zhong)(zhong)的探(tan)討凝(ning)固(gu)(gu)(gu)壓力、初始(shi)氮質量分數以及合(he)金元素(鉻和(he)(he)(he)錳(meng))等對(dui)液(ye)相(xiang)中(zhong)(zhong)氮氣泡(pao)形成(cheng)的影響(xiang)(xiang),進而明晰各因素對(dui)氮氣孔形成(cheng)的影響(xiang)(xiang)規律(lv)(lv)。


圖 61.jpg


聯系方式.jpg